The use of Probiotics versus Fybogel™ in achieving rectal volume consistency during prostate radiotherapy: A Retrospective Study

Epworth Radiation Oncology, Melbourne, Australia.
Introduction: Prostate Radiotherapy

- Dose-response relationship exists for prostate cancer (Zietman 2005)

- Dose escalation requires greater onus to ensure preservation of nearby Organs At Risk (OAR)

- Rectal toxicity is one of the major factors limiting further dose escalation in prostate radiotherapy (Stasi 2006)

- Bowel preparation from simulation to end of treatment
Introduction: Probiotics and Fybogel™

• Department bowel protocol in 2012: Fybogel
• Fybogel
 – Fibre (insoluble) supplement
 – Used to aid constipation
 – Improve bowel regularity
Introduction: Probiotics and Fybogel™

- Department bowel protocol in 2012: Fybogel
- Fybogel – Fibre (insoluble) supplement
 - Used to aid constipation
 - Improve bowel regularity

www.innerhealth.com.au
What are Probiotics?

- Probiotics and Radiation Therapy
 - Symptom and treatment-related side effect reduction
 (Delia et al 2000; Delia et al 2007)
 - Increased Colonic Transit Time and Regularity
 (Bouvier et al 2001; Verdenelli et al 2011)
 - Reduced flatulence
 (Nobaek et al 2000)

Results in consistency in filling similar to Fybogel™?
Aim

To assess consistency of

1. Rectal volume &

2. Rectal wall displacement

throughout treatment for patients in a **probiotics** and **Fybogel™** group by analysing Cone Beam CTs (CBCT)
Materials

- Retrospective Review (N= 10)
- Ethics Approval (Epworth HREC)
- Prostate Cancer Patients:
 - 65-78 years old
 - 90 CBCTs

Group 1) Fybogel (N=5)

Group 2) Probiotics (N=5)
Methodology: Bowel Preparation

<table>
<thead>
<tr>
<th></th>
<th>Fybogel™</th>
<th>Inner Health Plus™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning CT</td>
<td>1 sachet nightly, commencing one week before planning CT</td>
<td>Taking 1 tablet/day as part of daily supplement regime</td>
</tr>
<tr>
<td>Treatment</td>
<td>1 sachet nightly throughout treatment</td>
<td></td>
</tr>
</tbody>
</table>
| Active Ingredients | *Ispaghula husk* | *Lactobacillus acidophilus (NCFM)*
Bifidobacterium lactis (Bi-07)
Colostrum Powder (Bovine) |
Methodology

- Weekly CBCT scans prior to treatment @
 - Fx 1, 2, 3, 8, 13, 18, 23, 28, 33 (Total 9 CBCTs)
 - Co-registration with planning CT
 - Online daily zero action threshold
 - Treatment
Methodology

• CBCTs analysed in Eclipse™ (Varian Medical Systems)

• Rectal structures contoured on all CBCTs
 - Single Observer (SG)

• Data Collection
 - Rectal volume
 - Centre of mass
 - Rectal wall displacements

• Data Analysis
 - Unpaired T-Test
Methodology: Rectal Volume & Bounding Box technique

Rectal Centre of Mass

Epworth HealthCare
Methodology: Rectal Volume & Bounding Box technique
Methodology: Rectal Volume & Bounding Box technique

Bounding Box (Antolak 1998)
Methodology

• CBCTs analysed in Eclipse™ (Varian Medical Systems)

• Rectal structures contoured on all CBCTs
 - Single Observer (SG)

• Data Collection
 - Rectal volume
 - Centre of mass
 - Rectal wall displacements

• Data Analysis
 - Unpaired T-Test
Results: Differences in volume

FYBOGEL GROUP

Difference from Planning CT volume (cc)

<table>
<thead>
<tr>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.81</td>
<td>11.86</td>
</tr>
</tbody>
</table>
Results: Differences in volume

PROBIOTICS GROUP

Difference from Planning CT volume (cc)

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.98</td>
<td>23.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rectal Wall Displacements

FYBOGEL GROUP

Patient 6

Patient 7

Patient 8

Patient 9

Patient 10
Rectal Wall Displacements

PROBIOTICS GROUP

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5
Rectal Wall Displacement
FYBOGEL VERSUS PROBIOTICS

Fybogel Group

<table>
<thead>
<tr>
<th></th>
<th>Δ ANT</th>
<th>Δ POST</th>
<th>Δ RIGHT</th>
<th>Δ LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (cm)</td>
<td>-0.22</td>
<td>0.13</td>
<td>-0.10</td>
<td>-0.09</td>
</tr>
<tr>
<td>Mean STD</td>
<td>0.21</td>
<td>0.25</td>
<td>0.23</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Probiotics Group

<table>
<thead>
<tr>
<th></th>
<th>Δ ANT</th>
<th>Δ POST</th>
<th>Δ RIGHT</th>
<th>Δ LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (cm)</td>
<td>-0.25</td>
<td>0.09</td>
<td>-0.08</td>
<td>-0.06</td>
</tr>
<tr>
<td>Mean STD</td>
<td>0.30</td>
<td>0.22</td>
<td>0.34</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Rectal Wall Displacement
FYBOGEL VERSUS PROBIOTICS

Fybogel Group

<table>
<thead>
<tr>
<th></th>
<th>Δ ANT</th>
<th>Δ POST</th>
<th>Δ RIGHT</th>
<th>Δ LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (cm)</td>
<td>-0.22</td>
<td>0.13</td>
<td>-0.10</td>
<td>-0.09</td>
</tr>
<tr>
<td>Mean STD</td>
<td>0.21</td>
<td>0.25</td>
<td>0.23</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Probiotics Group

<table>
<thead>
<tr>
<th></th>
<th>Δ ANT</th>
<th>Δ POST</th>
<th>Δ RIGHT</th>
<th>Δ LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (cm)</td>
<td>-0.25</td>
<td>0.09</td>
<td>-0.08</td>
<td>-0.06</td>
</tr>
<tr>
<td>Mean STD</td>
<td>0.30</td>
<td>0.22</td>
<td>0.34</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Discussion: Rectal Volume

- Difference between ‘mean differences from planning volume’ was inconclusive, however;

- Variation in rectal volumes from planning was significantly lower for the *Fybobel™* group compared to the *probiotics* group.

Comparison of groups: 95% CI for the difference between treatment group STDs

![Diagram showing comparison of groups with 95% CI for the difference between treatment group STDs. The x-axis represents the difference between treatment group STDs, ranging from -5 to 20. The y-axis is not shown. The diagram includes a diamond marker labeled 'Diff (Prob-Fybo)' at the end of the 95% CI range. P<0.05 is indicated.]
Rectal Wall Displacements

PROBIOTICS & FYBOGEL: BEST VERSUS WORST

Patient 3

\[
\begin{align*}
\Delta \text{ANT STD} &= 0.30 \\
\Delta \text{POST STD} &= 0.23 \\
\Delta \text{LEFT STD} &= 0.32 \\
\Delta \text{RIGHT STD} &= 0.22
\end{align*}
\]

Patient 6

\[
\begin{align*}
\Delta \text{ANT STD} &= 0.22 \\
\Delta \text{POST STD} &= 0.15 \\
\Delta \text{LEFT STD} &= 0.41 \\
\Delta \text{RIGHT STD} &= 0.29
\end{align*}
\]

- PLANNING CT
- CBCT
- INTERVENTION
Discussion: Rectal Displacement

• Four interventions (90 CBCTs)
 - 3 Probiotics
 - 1 Fybogel

• Differences in anterior, left and right limits from planning were more consistent in the Fybogel™ group

• Increased volume → Lateral Expansion
Limitations

• Sample size of 5 patients per arm

• Estimated 50 patients per arm needed

• Rectal volume size at planning as a variable not analysed (Sripadam 2009)

• Rectal volume assessment methodology – unpartitioned structure (Stasi 2006)

• Anterior edge of rectum at prostate level (CBCT contouring)
Future Direction

• Future randomised prospective study between current protocol (Coloxyl and Senna) and Fybogel™ with greater sample size

• Improvements to Record & Verify usage and documentation

• Dosimetric analysis

• Bowel Toxicities

• Time of Day Factor
Conclusions

• Retrospective exploring the potential use of probiotics for bowel preparation

• Empirical evidence in support of Fybogel usage over probiotics alone

• Greater sample sizes necessary to demonstrate any conclusive clinical difference

• Suggests that probiotics as a bowel preparation should not be used in isolation
Acknowledgements

Sean McGuigan, Biostatistician, Clinical Trials Unit, Epworth Healthcare

Sarah Gonzales, Chris James and all members of the staff at Epworth Radiation Oncology

Dr Megan Robertson and the staff at the Epworth Research Institute

Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria.
References

Thank you for your attention. Questions?

www.innerhealth.com.au